PLAQUE: Automated Predicate Learning at Query Time

Abstract

Predicate pushing down is a key optimization used to speed up query processing. Much of the existing practice is restricted to pushing predicates explicitly listed in the query. In this paper, we consider the challenge of learning predicates during query execution which are then exploited to accelerate execution. Prior related approaches with a similar goal are restricted (e.g., learn from only join columns or from specific data statistics). We significantly expand the realm of predicates that can be learned from different query operators (aggregations, joins, grouping, etc.) and develop a system, entitled PLAQUE, that learns such predicates during query execution. Comprehensive evaluations on both synthetic and real datasets demonstrate that the learned predicate approach adopted by PLAQUE can significantly accelerate query execution by up to 33x, and this improvement increases to up to 100x when User-Defined Functions (UDFs) are utilized in queries.

Publication
In SIGMOD, 2024
Yiming Lin
Yiming Lin
Postdoctoral Fellow

My research interests include Data Cleaning, Data Preparation, Query Processing, Query Optimization.